
A mix of visual node editing and small compiled pieces has a history
of being incredibly productive:

I Max/MSP
I Synthmaker
I PureData
I Game Maker
I Multimedia Fusion



I Synthmaker is now called Flowstone.
I But before that, it got high praise
I FL Studio has a version built-in now, even.

(These bullets are hyperlinked; you can click them.)

http://www.dsprobotics.com/company.html
https://en.wikipedia.org/w/index.php?title=SynthMaster&oldid=861183014
https://www.image-line.com/documents/news.php?entry_id=1276154019


So what is it?

Figure 1: Basically, it was PureData/MaxMSP with a GUI editor stuck to
it.



The faceplate editor will have to be written regardless.

(Unless there is just a static faceplate and widget set.)



I PureData has an embeddable runtime libPD
I But it generates in blocks

I Could we patch the block size to one?
I Would the performance still be tolerable?



What is PD really?

What if a custom one had to be made?

I Patch
I Object
I Message
I Pin
I Number



Patch
A patch is just a DAG with a tiny number of node types.
Khan’s Algorithm to make sure looping hasn’t ocurred.

But actually. . .
send~ and receive~ immitate the block delay of cables.
So we just insert these shims wherever a loop is detected.
Usability \o/



Patch
A patch is just a DAG with a tiny number of node types.
Khan’s Algorithm to make sure looping hasn’t ocurred.

But actually. . .
send~ and receive~ immitate the block delay of cables.
So we just insert these shims wherever a loop is detected.
Usability \o/



Object
I It’s literally just a name and some parameters with braindead

syntax:
I moses 5
I Sends values below five to the left and values five or above to

the right.
I And GUIs are created by typing in a named object.



I But these are actually just loaded from C modules.

I Only need a very basic ABI to load, ask for a table of modules,
store, etc.

I dlopen, dlsym, dlclose, etc for live reloading (DSP compiler
of choice to make individual blocks stays out of our binary!)



Messages
I The leftmost input is “hot” and any messages to it cause the

node to propagate.
I Other inputs are “cold” and are acknowledged/stored but data

isn’t sent further down.

I These are basically just typed lists.
I Most of them are small; just use a fixed-size buffer and a

discount slab allocator here.
I PD also lets you put messages as objects in the patch, which

can be triggered when they receive a “bang.”



Messages
I The leftmost input is “hot” and any messages to it cause the

node to propagate.
I Other inputs are “cold” and are acknowledged/stored but data

isn’t sent further down.
I These are basically just typed lists.
I Most of them are small; just use a fixed-size buffer and a

discount slab allocator here.

I PD also lets you put messages as objects in the patch, which
can be triggered when they receive a “bang.”



Messages
I The leftmost input is “hot” and any messages to it cause the

node to propagate.
I Other inputs are “cold” and are acknowledged/stored but data

isn’t sent further down.
I These are basically just typed lists.
I Most of them are small; just use a fixed-size buffer and a

discount slab allocator here.
I PD also lets you put messages as objects in the patch, which

can be triggered when they receive a “bang.”



The GUI Problem

I Code for editing the noodle graph is actually almost the same
as the code for moving panel widgets.
I They are just “graph nodes” with no i/o pins!

I Panel size would be a crinkle since Rack doesn’t want you to
resize your panel at runtime.



The Node Problem

I Would have to write the fundamentals (bang, mult, div, etc.)
I But if you’re only dealing with control and CV, not midi, this is

actually much less.
I Can still farm out workhorse DSP modules to Faust/etc

(anything that compiles to C!)
I Actually with some trickery, backends could be pluggable.



Pluggable?

I Some modules say “hey I don’t really know what I’m doing.”
I We ask them if they can handle the object creation messages.

I This is where they run their JIT, python code, etc, . . .
I If they can’t, just move to the next adapter.



Are we winning yet?

I (Someday) convert the panel to C/C++ code.
I (Someday) convert the graph to C/C++ code.
I (Someday) code conventions so blocks can be built in static or

dynamic mode
I dynamic: gets loaded, goes through API; tells us how to gen

code to call it in static builds
I static: just splays the code out from the graph+block feedback

and makes a Rack plugin you could build with make


